Page last updated: 2024-12-10

1,5-dimethyl-4-oxo-N-[2-(3-thiophenyl)ethyl]-2-pyrrolo[3,2-c]quinolinecarboxamide

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

You're describing a complex organic molecule with a very specific chemical structure. Let's break it down:

**1,5-dimethyl-4-oxo-N-[2-(3-thiophenyl)ethyl]-2-pyrrolo[3,2-c]quinolinecarboxamide**

* **1,5-dimethyl:** This tells us there are two methyl (CH3) groups attached at positions 1 and 5 of the molecule's main structure.
* **4-oxo:** This indicates a ketone group (C=O) at position 4.
* **N-[2-(3-thiophenyl)ethyl]:** This part describes a side chain attached to a nitrogen atom (N). It includes a thiophenyl group (a sulfur-containing aromatic ring) connected to an ethyl group (CH2CH3).
* **2-pyrrolo[3,2-c]quinolinecarboxamide:** This is the core structure. It describes a fused ring system composed of pyrrole and quinoline rings. Carboxamide signifies an amide group (-CONH2) attached to this core.

**Importance in Research**

Without knowing the exact context, it's impossible to say definitively why this specific molecule is important for research. However, molecules with this kind of structure are often investigated for their potential biological activity. Here's why:

* **Complexity:** The complex structure, with multiple rings and functional groups, suggests potential for a variety of interactions with biological systems.
* **Drug-like properties:** The presence of an amide group and other functional groups can give the molecule characteristics important for drug development, such as solubility, stability, and ability to bind to receptors.
* **Target specificity:** The specific arrangement of groups can lead to selective binding to specific targets within cells, potentially making it useful for treating certain diseases.

**To understand its specific significance, we need additional information:**

* **What research area is it relevant to?** (e.g., cancer research, neurology, infectious diseases)
* **What biological activity is it being investigated for?** (e.g., inhibition of enzyme activity, modulation of cell signaling)
* **What are the research findings related to this molecule?**

Once we have this information, we can understand the specific importance of this molecule in the relevant research field.

Cross-References

ID SourceID
PubMed CID5307782
CHEMBL ID1423764
CHEBI ID109219

Synonyms (15)

Synonym
REGID7965709
smr000095091
MLS000118143 ,
CHEBI:109219
1,5-dimethyl-4-oxo-n-(2-thien-3-ylethyl)-4,5-dihydro-1h-pyrrolo[3,2-c]quinoline-2-carboxamide
AKOS001827175
1,5-dimethyl-4-oxo-n-(2-thiophen-3-ylethyl)pyrrolo[3,2-c]quinoline-2-carboxamide
MLS002587573
HMS2264M06
CCG-29805
CHEMBL1423764
Q27188294
1,5-dimethyl-4-oxo-n-[2-(3-thiophenyl)ethyl]-2-pyrrolo[3,2-c]quinolinecarboxamide
SR-01000131403-1
sr-01000131403
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
pyrroloquinoline
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (17)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, HADH2 proteinHomo sapiens (human)Potency31.62280.025120.237639.8107AID893
Chain B, HADH2 proteinHomo sapiens (human)Potency31.62280.025120.237639.8107AID893
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency35.48130.177814.390939.8107AID2147
Chain A, CruzipainTrypanosoma cruziPotency39.81070.002014.677939.8107AID1476
acid sphingomyelinaseHomo sapiens (human)Potency354.813014.125424.061339.8107AID504937
ATAD5 protein, partialHomo sapiens (human)Potency18.35640.004110.890331.5287AID504467
TDP1 proteinHomo sapiens (human)Potency17.35820.000811.382244.6684AID686978; AID686979
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency35.48130.011212.4002100.0000AID1030
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency11.22020.28189.721235.4813AID2326
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency89.12510.035520.977089.1251AID504332
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency25.11890.001815.663839.8107AID894
chromobox protein homolog 1Homo sapiens (human)Potency100.00000.006026.168889.1251AID540317
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency8.19950.00419.984825.9290AID504444
importin subunit beta-1 isoform 1Homo sapiens (human)Potency31.62285.804836.130665.1308AID540263
snurportin-1Homo sapiens (human)Potency31.62285.804836.130665.1308AID540263
Guanine nucleotide-binding protein GHomo sapiens (human)Potency2.51191.995325.532750.1187AID624287
TAR DNA-binding protein 43Homo sapiens (human)Potency10.00001.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (23)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (12)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (10)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (14)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID652178Confirmed Agonists of Novel Allosteric Modulators of the M1 Muscarinic Receptor2013Molecules (Basel, Switzerland), Jan-08, Volume: 18, Issue:1
Benchmarking ligand-based virtual High-Throughput Screening with the PubChem database.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (6)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (16.67)29.6817
2010's4 (66.67)24.3611
2020's1 (16.67)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.35

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.35 (24.57)
Research Supply Index1.95 (2.92)
Research Growth Index4.30 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.35)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other6 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]